
AD-AO87 521 KRANNERT GRADUATE SCHOOL OF MANAGEMENT LAFAYETTE IN FIG 12/1
A MODAL LOGIC FRAMEWORK FOR AN A.I. PLANNING SYSTEM.(U)
JUL 80 R P MCAFEE, A 8 WHINSTON DAAG29-79-C-0154

UNCLASSIFIED ARO-16231.4-EL NL

EIIEEEIIIIi
EhmhEEEEEEEmoEEEIIIIEEEE II

-~ -WX

or SECURITY CLASSIFICATION OF THIS PAGE (Whben Data S"totd)

IS. REPOT UTOtAM EN 2. GOTACSINN.3 R5 7 CTLGNME

17 ISRSUIN TTEET O L. AblatmerD S l. 0 Idfemtfo oeS

14. SUPLE
ME T R NOTESe

ME
P RTC

VE E

document tn. Cnrc o A9 5

20. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 9 AON ACT RCniu GRAN roae.Ud.I Me.119 dmuAN ybla mr
A r'a d.ilsp n ofpannIytesiVosrcedi hsppr

The proe solvigsstmi dvlpe nth rmeokofamda oi
and ~ ~ ~ ~ ~ ~~~7 th ocp fwaetprcniini nrdce ogieteslto

procdre . hepoceur isagnrlztoJfsvrlvl-nv rbesolingagrtm. Mroeteemyb oegisi rciaiyo h
agrith reutn fro thi extnso whic is i usrtd b NUeM lE.

-S 1204 01SCRTYC
g IN PTI A

_____MW"0" 80 GRW 81MET 05OEC.7AS

A MMAL f/OGIC FRA14EWORK FOR AN A. I. PLANNING SYSTEM

R. Preston McAfee

and

Andrew B. Whinston

Krannert Graduate School of Management

and

Department of Computer Science

Purdue University

* The authors gratefully acknowledge the theoretical and editorial assistance
of Fran Berman and Mike Odonnell in the preparation of this paper. Any
errors contained herein are the responsibility of the authors.

THE VIEW, OPINIONS, AND/OR FINDINGS CONTAINED Iii THIS REPORT ARE THOSE OF
rNE AUTHORS AND SHOULD NOT B CONS'VJEI) AS AN OFFICIAL DEPARTMENT OF THE
ARMY POSITION, POLICY, OR DECISION, UNLESS SO DESIGNATED BY OTHER
DOCUMENTATION.

19-

I

Abstract

A formal development of planning systems is constructed in this paper.

The problem solving system is developed in the framework of a modal logic and

the concept of weakest precondition is introduced to guide the solution

procedure. The procedure is a generalization of several well known problem

solving algorithms. Moreover, there may be some gains in practicality of the

algorithm resulting from this extension, which is illustrated by an example.

ACCU~i nFor
NTIS I I

DiDC TAB
1n _n.ou,c ed

Sic.-tio -

S Ava ili des

, ~Spe¢ &

I. Introduction

In this paper, we consider formalizing problem solvers for predicate

calculus expressions. Many of the problem solving systems in the literature,

while often ingenious, are essentially variations on the Resolution Principle [5.

In an ad hoc way, most of these have introduced operations over predicate

calculus models, and devised some method of machine search over the operators.

It is precisely these features of the literature that are dealt with in this

paper.

Our first action is to demonstrate that STRIPS [21 programs are

examples of programs in the formal language Dynamic Logic C 3]. This is

a useful feature in itself as it allows us to examine STRIPS with the

analytical tools a formal language provides. We then can observe that our

operators are not limited to STRIPS type operators. A much larger class of

operators becomes available via this formalization. These operators may

simulate actions, as in STRIPS, or may only be calculations, such as

multiplication.

An important advantage of a formal theory of operators is the

analytical tools available. In this paper we focus on Dijkstra's 1 11

weakest preconditions as an excellent example of operator analysis. These

weakest preconditions permit us to evaluate in advance whether application of

an operator will achieve a goal. Because this is a formal criteria, it

is naturally embeddable into a machine for automated decisions. Another

useful feature of ti-e formal analysis is the ability to prove results about

the system. In particular, it was possible that the STRIPS approach,

involving only concatenations of operators and not allowing for unions or

iterations, was a restriction of a system involving these latter operations.

In this paper, we prove that concatenations of operators is sufficent for

solving STRIPS type problems. The evaluation function t 2] of STRIPS is

an ad hoc method of determining whether or not a given operator is appropriate.

We formalize this by defining a measure of distance, called a pseudometric,

over the space of predicate calculus models. In most cases this allows for

increased efficiency in the decision process. Since this simulates the

approach of a human decision maker, it is a useful tool in mechanized problem

solvers. Humans have some notion of what models are close to one another, and

formalizing this may allow the machine a similar faculty. Moreover, pseudometrics

have been implicitly assumed in many of the extant problem solvers.

There is some advantage to their explicit use, as shown in McAfee and Whinston [4).

II. .1 The Guarded Commands Language

In order to extend and formalize STRIPS, we may embed STRIPS inside a

larger formal language. Although STRIPS operates within the context of

predicate calculus, STRIPS is essentially beyond predicate calculus,

because its operators are not tautological proof procedures.

STRIPS operators are modal operators, i.e. their application reflects a

change of states. For this reason it is sensible to embed STRIPS in a

language capable of expressing facts abouts state changes. As we shall see,

a subset of Dynamic Logic £3) called the Guarded Commands language rI) makes

an excellent choice for such a language.

The guarded commands language is a strict extension of predicate

calculus, and the set of terms is identical in both.

The set of programs, PGC, for Programs in the Guarded Commands language,

are defined inductively as follows. We have restricted the origional

formulation to deterministic programs. Let e be any; term, P and R

be predicate calculus formulas, and x a variable. Then

1) ABORT E PGC

2) x #- e F PGC, (assignment)

3) for o, 0, E PGC, a,; 8 E PGC (concatenation)

4) for 9 f PGC and predicate calculus expression P,

P?; cv U 1P?.6 f PGC (Program union)

~ S. J

3

5) (P?; (y)*;l P? E PGC (unbounded iteration)

This is actually a subset of Dijkstra's original program set, limited to

deterministic programs. Determinism is a useful assumption that will cost

little , if any, generality.

The programs are intended to be interpreted with variables ranging

over the real numbers and the standard meaning of any functions and

constants necessary, e.g. +, , 01 1. We assume there is a well defined

Interpretation of predicate symbols. The predicate calculus quantifiers

and connectives are all given their standard interpretations. The semantics

of the program induction are given as follows:

1) Abort

2) Assign term a to variable x

3) do a then a

4) If P do (yelse B

5) While Pdo x

Observe that do loops may be constructed using iteration:

x *- o; (x < n?;y; x +- x +1) * ; x > n?

is a program whichexecutes a for x - 0,. . n

For a more specific example, consider the PCC program

i .- 1; j *- 0; (i 5 n?; j +- j +m; i * i + 1) ; i > n)?

This program adds m to j n times, that is, it calculates mn. Actually,

in the STRIPS environment, we need only begin with a finite set X of

programs (operators) from which we may compose new programs. This forms

the set of Elementary Programs E , which is defined inductively below:

1) = 'E

2) E, B, E then o; BE E

3) , 8, E E and P a first order statement, then (P?; o U IP?; 8) E E

4) a E I and P a first order test then (P?;a') *; IP E E

The semantics are the same as in PGC.

- --- -- - - --

i~h li.- | |'

Given a set of programs E a sub-language of DL, called PDDL-GC, is defined

similar to the predicate calculus induction:

1) any predicate calculus expression is in DL

2) for cy E E , and DL expressions P, R, then -P, PVR (7x) P and <v> P E DL

The semantics of these expressions is the same as in predicate calculus

except for < a > which is undefined in predicate calculus. < a' > P is inter-

preted to mean "o, terminates with P true", that is, after operating g, P

will be trie.

If (y corresponds to a STRIPS operator, then P + < o, > R means that if

P is true, then operation of o! will make R true. It is very useful to

have such expressions formally expressible, as they may be very useful in

guiding a STRIPS search. Through such expressions, we may explicitly

represent information on how to procede to make R true. This allows us

to replace STRIPS' "evaluation function" [2 1 with an organized, formally

stated and automatable body of knowledge about what works to prove goals.

However Dijkstra's formalism possesses considerably more power.

II. .2 The Weakest Precondition

The Guarded Commands Language was designed to make program verification

possible and simple. Dijkstra's original purpose was to establish conditions

under which a program a' will terminate with a predicate calculus expression

R true, i.e., what implies < ce > R? He demonstrated that in the domain of

GC, and hence all subprogram sets, there is a weakest precondition (wp) expressed

in infinitary predicate calculus so that wp(a', R) = < a, > R. Thus we may embed a

fragment of the program verification problem inside predicate calculus, where

we have the Resolution Principle [51 and other first order theorem provers

at our disposal. Dijkstra provides these wp expressions via the induction

below, although our notation remains that of Harel [31.

vp (abort, R) false

wp (x - e, R) - Re Where Re is R with x's replaced by e's and all bound
x x

variables of R appearing in e are renamed.

wp (cv; $, R) wp (cy, wp (,R))

wV (P?: ,,v I IP?; F. R) (p-. wp (ey, R)) A (P - wp (, H))

p 5

wp ((P?; ci)*;1P?, R) V H where H = 7p A Rn o n 0

and H R P A vp(. H)
n+ln

Observing that H Corresponds to the condition implying iteration of the express-
n

ion(P?; o n times makes R true, one may quickly establish that all of these equivalences

hold. These equivalences provide a method of constructing the weakest

precondition implying for u E PGC, < a' > R, for first order R.

In general we cannot expect the weakest precondition of programs

involving iteration to have predicate calculus equivalents. v H is
n0 n

an expression in an infinitary version of predicate calculus, and outside

of ordinary predicate calculus. The formulation of the weakest preconditions

demonstrates that for any program a without iteration, < of > P has a

predicate calculus equivalent. We will argue that for a problem solving

environment where the initial state is given and fixed, iteration is

unnecessary. In this way we will avoid the need to work in an infinitary

environment. Clearly, for many types of program analysis, it is necessary

to include iteration.

II. 2.3 STRIPS Operators

The operators of STRIPS change world states in an organized fashion. Any STRIPS

operator a' is given by an ordered triple of sets of predicate calculus expressions

< (Pl ' Pk), (A1,. Am] fD. . " Dn) > " The application of a has

a precondition, which is that P = PI A P2 A. . . A Pk holds. If P is true,

then operation of y results in a new world state where the expression

A = A1 A. • • A Am is asserted and Dl,. . . , Dn are no longer asserted.
n!

STRIPS presumes that nothing else is changed in the world state transition,

except of course that new implications may be derived.

To model STRIPS, we must embed the changes in the truth values of

expressions into changes of variables. This observation reveals a direct method of

such an embedding, that is, provide for variables whose values are truth values of

expressions.

J,.

6

Thus, for each predicate calculus expression E, we define a variable

PE whose semantic interpretation is

t = 1 indicates E is asserted true

=E -1 indicates E is asserted false

tie 0 fl, - 1) indicates neither E nor lE is asserted.

We may inductively build on this definition

i) P -E - "E

1 tE= 1 or tF 1

ii) E V F - UE -1 and 'F= -1

otherwise

iii) if 3x E (x) =1

-lif -1(x) (x)
NxE

o otherwise

pE = x is notation for EQUAL (E' x), the equality predicate. We also establish

a rule of precedence: If E fi, -1) and it is proved that i , then

E 1 . This rule of precedence should be used to adjust for

new information after any theorem proving, that is, after proving an expression E,

make sure to assign I&E #- I. The STRIPS program a is very easy to incorporate

into DL with this formalism. Let

Y P? PA " 1; PD,- 0; . l)D 4- 0 U-P? ABORT.

Then ot tests whether the precondition P holds, if so, it makes

A - A, A. • ., A An true and makes DI, . ., Dn unasserted. Otherwise it

fails.

A STRIPS system is merely a collection of operators of STRIPS type. In

the notation of section 2.1, we let X = (STRIPS operators written in program

form). The set of admissable programs is then E.

Thus we may embed STRIPS operators into the GC formalism. A STRIPS

problem consists of an initial state, expressed in predicate calculus,

and a goal. The goal is a predicate calculus expression R. The intent of

A..

7

STRIPS is to find a sequence of operators a,",. . ., so that operation of this

sequence results in R being true. This is converted into GC by first

observing that a predicate calculus initial model is an assignment of terms

to the t variables. The goal is the same expression R. The problem

remains to find any sequence of programs (operators) where wp (I;. . . ;9V' R)

is truein the initial state.

In section 3, we shall develop the mathematics of GC to suit our

program synthesis, and not program verification, needs. This will result in

the construction of a GC problem solver. In Section 4, we shall return to

STRIPS for a comparison.

III. 1 Some Mathematical Results.

In order to show that the planning system in the following section

operates in the manner intended, we need some analysis of PDDL-GC. Although

many of the sections results apply to other varieties of DL, we will assume

PDDL-GC throughout.

Lemma 1: Letcy, B be GC programs and P = wp ((Y, R). Then if there exists

a firs: order test Q? so that wp ((Q?; ry 'J -Q; 9),R)is true, we have

wP ((P;(U -IP?; B)R) is true.

Proof: wp ((Q?; o j IQ?; 0),R) =- Q -+ wp (ay, R) A -IQ -4 wp (B, R) was previously

* noted. This implies Q -+ P, and by contrapositivelP -o -Q. Therefore

* P = wp (01, R) -+ wp (ry, R) and -1P -+ IQ -+ wp (6, R). Consequently

wp((P?; (y [J iP?; B)R) - P - wp (01, R) A -P - wp (B, R) is true, as desired.

Lemma 2: (Dijkstra [1])wp (a, P V Q) - wp (Ot, P) V wp(U,Q)
wp (ot, P A Q) F wp (G,P) A wp(a,Q)

Lemma 3: LetP E wp (cv, R). Then wp (P?; a U iP?; 8, R) F wp (ci, R) V wp (S, R)

Proof: wp (P?; C j-IP?; 8, R) P-4 wp (a, R) A _P-4 wp (S, R)
wp (N, R) -+ wp (cv, R) A 1wp (a, R) -4 wp (B, R)

s-Iwp (0,, R) -4 wp (8, R)
. .. wp (o,, R) V wp (8, R)

MOWN

8

Lom 3 demonstrates that, under the hypothesis P wp (nR),

U functions exactly like boolean disjunction.

Lewu.i 4: Let S r wp(o', P) and suppose ot terminates. 1

The n wp(o,; (P? ;8 U I P?;) R) --wp (S? ~8 U-1S?t;y, R)

Proof:' wp(1; (P?;e U 'IP?;y) , R) =wp(cl,wp (P?;e (I 1P?;V, R))

wp(cy, P - wp(B,R) A IP -owp(-4, R))

wp (o, P -4 wp (8, R)) A wp (cY, IP 4 wp~v R))

wp(t, -P V wp(e, R)) A wp(y, P Vwp(y, R))

wp (ot, IP) V wp((y; 5, R) A wP (ci;P) V wp (c;y , R)

7S V wp (l; 5, R) A SV wp (oj;,v, R)

S -0wP (a;B, R) Al-1S -+wp (a;y, R)-

Definition 5: 0?;e U (ISAT)?;,yU (-IS A1T)?; F) FS?;a Ul-S?; (T?;y L-lT?;5)

This rule may be used recursively to identify the meaning Of a union of

n pogamsP ? CYI P2'; C2 U. . . U Pn?; cln Also note that then

restriction on such unions is exactlyiJ) P 1 V P2 V . V Fn is a

tautology and ii) The P, 's are pairwise inconsistent. Any finite union

satisfyIng i) and ii) is a PDDL-GC program.

Lemma 6:

il wP((P?;cr UlP?;O);(R?;-v U -lR?;8), S)

Vp((PA wp(oa,R))?;Y;,Y LU MP\ wp(&, lJR))?;cI;6 tU

(IPA wp (cy I R))?;;g~ U (iPt wp(0,-1R))?;t3;8 S)

i i wp (P? ;(R? ; i U -1R? ;) U lIP? ;(T? ;v U -IT? ; 6 S)

wp(PAR?;ot U_ PA -1R?;o (IPAT?;y U1PAIT?; , S).

The proof of lemma 6 is straightforward.

Lemma 7~ Any PDDL-GC program formed by composition of base programs using t)

and ; (without iteration) may be equivalently expressed in the disjunctive

'wp(o~t,-P) aL-wp(cy, P) if and only if a terminates. See Dfjkstra E]

9

normal form PI?; 0 1 tj P2 ?; 012 U. .tJ Pn? ;on, where a'. is a concatenation

, " ; - of base programs, and P. is as in Definition 5.
2 1.i

Proof: Using lemma 4, we may drive base programs inside unions. Using

6 and 5, we may rewrite unions concatenated with unions and unions of unions

into new unions. This is repeated until the disjunctive normal form is

established. The new program is equivalent, at least in terms of input/-

output behavior, because the wp's of each program are identical.

This result is obvious in the sense that, by expanding the computation

tree of any program without iteration, there are only finitely many

branches and thus there must a condition P that determines whether the

computation proceeds down the ith branch. However, in the process of

proving lemma 7, we have provided an algorithm for calculating P. This

is where the usefulness of the result lies.

Suppose and initial state, given by a set of predicate calculus axioms,

is given and fixed. Then it is clear that, for any program a if < o' > Q

holds, then any iterations operate finitely many times and there will be

a sequence of base programs 8 1,. .,k such that < 81; . . k > Q is true.

This yields:

Observation 8: In the STRIPS environment, where initial states are fixed,

concatenation of base programs is sufficient to create a solution, if

one exists.

Of course, iteration and union of base programs makes an interesting topic

for A.I. research, but the STRIPS search method is sufficient. Because it

is in general undecidable how many iterations are necessary to achieve a

goal, this creates a difficult research issue, and is beyond the scope

of this paper.

~, - --~ -' |

10

Theorems analogous to Lemmas 1 and 3 arise in the general union case.

Lemma 9: let P1 - wp (oil, R), Pi 1 1 A . . .A FPi-1 A wp (ait R), 1-2,..., n-I

and P - P A . . . A Pn-l. Then if there are first order expressions Q19 9Qn In

Such thatwp(Q1?; aiU Q2 ?; Co2 U . . U Qn?; nR) is true, then

wp ((P,?; 01 U. . .U Pn?;an), R) is true.

The proof is analogous to the proof of Lemma I

Lemmal0: If Pi, t "" Pn are chosen as in Lemma 9, then

wp (P?; R) . . n, = wp (,, R) V wp (a 2 R) V. . .v wp (arn R)1?;el U. . .Pn ?; an' 2R)

Proof: It is easily demonstrated that

wp (P 1 ?; el I ... L1 Pn?; ant R) - PI + wp (a' R) A P2 - wp (a 2 p R) A.. APn- wp (anR),

from definition 5. For all i < n, we have P, = P1
A P2 A. . .A - APii A wp (oi, R)

herefore for i < n, P wp (i R) is clearly true, and thus

Wp (P1 ?; of, U. . . Pn?; a n , R) = P n- wp (on , R) P n V wp (CYn, R)
M '7(-1P A 1P V . . .A 1Pn l V wp (o 2R) = P V P V. V P V wp (a' R).

1 2n-1Pn 1 2 n-I V

Observe, for sentences A and B, since A s (AAB) v A

A V (1AAB) - A V (AAB) V (1AAB) nAV ((A v-IA) A B) AvB

Letting A - wp(ey,R) and B - wp(2, R), we have

P1 V P2 wp ((Y,, R)v (7wp (al. R)AwP (a 2 , R))uwp (1, R) V wp (or2 , R).

Suppose for induction that P1 V P2 V. . vPk = wp R) V. .v wp (k R)

This holds for k - 2. let A = P1 V. . .V Pk and B = wp (ak+l, R)

Then P1 V...VPk+l (P V. . .VP)v Pk+l .(Pl V. . V Pk) V (P 1 A. . .AlPkA wp (ok+l' R))

= (PI V. . V Pk) V(((PI V. . .V Pk) A wP (ak+l' R))

(P V. .. V P) V wp (cak+l, R) E wp (Cyl, R) V. . . V wp (ork, R) V wp (ak+l, R).

For any k - n - 1. Therefore letting k = n - 1, we have

P1 V.. .V P n-1 wp (al, R) V... V wp (an-l' R).

Therefore wp (PI1 ; ar U. . .U Pn?; on) - P V. . .V P V wp (a R)

Sa wp (l R) v. . .V wp (an, R) as desired.

, !

Suppose we have an initial state I, a first order goal R, and some

first order facts in our knowledge base which are true in all legal states.

Denote the last set F. Facts about the state Iare all facts concerning the

assignment of terms to variables.

Now we might try to prove R from F, inserting knowledge of assignments

of I. There is an algorithm, the Resolution Principle,5], specifically

designed for doing this. The Resolution Principle checks a first order

expression R against a body of facts F by assuming IR A Fand seeing if this is incon-

sistent. If 7RAF is inconsistent, then F proves R, and R is true with respect to F.

Resolution operates with two parts, one a theorem prover with respect to

predicates, the other a unification principle that assigns terms to variables

attempting to facilitate the theorem proving. In the DL context, unification

changes states. Because we wish to control our states, and indeed unification

might move us into an illegal state, we will operate resolution without the

unification principle. If the unification principle is desired, it may be

added as a base program, so there is no loss of generality from this alteration.

In the process of resolution, we will, however, allow assignments of the state

I to variables to be inserted for those variables. This limited unification,

together with the theorem prover, might be termed resolution with respect to

the state I. When we refer to resolution in a DL context, we will always mean

resolution with I - unification.

Now in attempting to prove R from F inside I, we may operate resolution,

attempting to prove a contradiction from IR A F A I, where I denotes both the

state, and the first order characterization of that state (e.g. if x *- e in I,

then EQUAL (x,e) characterizes this assignment, where EQUAL (x,y) holds if and

only if x - y).

r -..-

12

If an inconsistency is found, the problem is solved and we need not apply

programs, as R is already true. So suppose resolution operates for a long time

and no contradiction is uncovered. Let A be an assertion proved by resolution.

In the next section we shall give criteria for which expression A to choose.

In the proof of A using resolution, a certain number of facts from I were used.

Let this set be B1. . ., Bk ' These are called the state depenents facts in

the proof of A. Finally, suppose R itself is a subgoal, R wp ((y. Q) and

a is a proposed program for making Q true (which may itself be a subgoal). So

if R is true, then operation of a makes our desired result Q true.

Lemma 11: Suppose there is a program B such that A -+ wp (1, Q).

Then wp ((R?; y I IR?; a), Q) is true.
3

Proof: wp ((R?; y Li -JR?; B),Q) - wp (ry, Q) V wp (0, Q) =- R V wp (B, Q)

If R is true, then R V wp (p, Q) is true. If IR is true, then resolution

proves A is true, which by hypothesis implies wp (6, Q).

Lemma 12: Suppose there is a program 8 so that

wp (, R V (Bl A. . . A Bk A 1A)) is true. Then

wp (,; c, Q) is true.

Proof: wp (b, R V BI A. . .A Bk AlA) - wp (5, R) V wp (9, B1 A. • A Bk A-A).

is assumed true. If wp (, R) holds, then wp (B; (Y, Q) -wp (8, wp (G, Q))

wp (, R) is true that is, operation of 0; cr proves Q.

On the other hand assume wp (B, B1 A. • .A Bk AlA) is true. We know that

1 R A F A B1 A. . .A Bk -# A, because BI, . . ., Bk are precisely the state

dependent facts used to prove A in the resolution operation. Since by

hypothesis, after operation of $ we have B1 A. . .A Bk AA, and because F is

true in all states, we cannot have lIR. Otherwise we would have (iR A F A B A. . . A

Bk) A -A implyingAA-A. As a result, if wp (B, B1 A. . . A Bk A-7A) is true,

wp (B, R) is true, which as we saw, implies wp (0; cy, Q).

13

The interpretation of Lemma 11 is as follows: suppose we operate resolution

trying to prove wp(a, Q) is true. We are unable to prove an inconsistency,

but we do prove an assertion A. The assertion A is the difference between R

and success. Consequently we attempt to handle this difference by adding a

separate case. A sufficient condition, as we saw, for handling this difference

is to find a program B so that A -+ wp (e, Q). The process is not contingent

upon finding such a 6, however. We might produce a candidate y for 8, and then

extract the difference, handle this case, extract a new difference, etc.

It is in general undecidable if this method converges. Consequently,

one can only note that, if there is a solution, and a backtracking method

is implemented so that any possible concateration of base programs is

eventually examined, then the procedure will terminate with a solution. If

there is no solution, then in many instances this will be undecidable.

Undecidability is a fact that we must live with, and do what we can. Of

course, it is advisable to avoid trying to decide undecidable issues.

The reader should also note that there is no problem if resolution is

stopped too early. For suppose R = wp (a, Q) is true, and that resolution is

stopped before an inconsistency arises. Then wp ((R?; (J -iR?; 8),Q) will be

true. This follows as R is true, and hence R?; a U1R?; 5 will execute a, and

we assumed R = wp (a, Q) is true. Thus there is no loss from terminating

resolution too early.

The solution method inherent in Lemma 12 is perhaps more appropriate, as

it relies on the concatenation and not disjunction of programs. As we

observed in Observation 8, concatenation is a more promising approach, as we

can always solve the problem via concatenation of base programs. In Lemma 12,

A is again viewed as the difference between R and success. This time, instead

14

-of attempting to handle A as a separate case (as A -# wp (• Q), we have-lwp (B, Q) -

IA, and lA implies R true) instead, we attempt to find a program a to negate A.

This would allow us to complete the proof of R, and thus have wp (B; a', Q) true.

Again we may note that even if resolution is terminated before it would have

proved a contradiction, there is no loss of generality. The predicate wp (9,R) is true

so 0 cannot negate R. Consequently, wp (0; a', Q) remains true.

III. .2 A solution method

The basis of the solution method will be replications of Lemma 12.

We initialize the problem by providing a goal R , an initial state I, a
0

set of base programs, and a set of first order truths, F.

Begin the solution method by attempting to prove Ro, using resolution on F

and state facts I. If R is proved, then it is currently true and there is
0

no sense applying programs. If R is true, halt with this fact. Otherwise,

extract the difference between R and success as in Lemma 12. The means of

producing the difference A and the state dependent statements B,. .,Bk
0

will be discussed later. For now, assume we have them. Let

00 0
QO Rv(- A B1 A . . .A Bk). We select a program which is a candidate

0

for making Q 0 true. The means of producing this program, together with the

mechanism for the choice of A, will be discussed later. For now, presume that

we obtain it. Let R 1 wp (a', QO). Observe that lemma 12 implies that if

R is true, we are done.

1The selection of R will serve as initialization for a general induction

to show that the solution method preserves the situation that Ri true means a solution

n n-i nhas been found. Suppose we have found R - wp (an Qn), and if R is

n ntrue, the problem is solved. Operate resolution on R to see if Ris true.

If we fail to prove Rn, extract a minimal difference A and required state
n

nn

dependent statements B , . . . , Bn in the proof of A . Let
n nn

A.A BT), and choose a program at + 1, to be a candidatenn Rk n

for making Qn true. Le n+l W () Observe that lemma 12 implies
-nn+l,

if R is true, then operaLion of makes p true, and we assumed Rn true

* -* ~'. -.. *., .~- -- - -.

15

meant we had the problem solved. As a result, we have preserved the property

that Ri true means the problem is solved. Thus, this is a valid recursion on

the Ri5s, moreover, if we reach a state where Ri is true, then operation of

0i; Cti-; a " 2 ; C1 makes R true, our goal. Hence, the

desired program is i ; li-I . . . ; a1V by iteration of Lemma 12.

This is the basis of the decision procedure. What is left is the formulation of

the choices of A and

There is a natural procedure to guide the choice of a . Because a programn

only assigns terms to variables, although perhaps in quite complex ways, the

choice of % is entirely one of finding a program that gives values to the

variables which force lR A F to be inconsistent and hence make R true. Thus, we~n n

wish to find a program that unifies the literals in a set of expressions, that

is, our program must simulate the most general unifier of the resolution principle.

Because the most general unifier is readily calculable, it serves as a basis for

the choice of a . Unification defines the variables which must be altered and even
n

the manner in which they should be altered in order to prove 7R A F inconsistent.

Thus, a natural procedure arises for the choice of an"

This simulation of unification in the choice of programs is not arbitrary.

Resolution is a special case of the problem solving environment described herein.

In Resolution, there is a set of facts and a goal R, to be shown as a theorem

of these facts. Resolution operates by literal elimination, or attempting to

show R directly, and appropriate unification, or assignment of terms to variables.

Resolution is the special case where all programs, or assignments of terms to

variables, are permitted. In this Resolution environment, the most general

unifier serves as a good method of proving R. When we restrict the set of

valid programs and move to the problem solving environment of this paper,

naturally the best choice of programs will emerge from simulating the unconstrained,

resolution situation. Thus, the solution method of this paper yields a model of

problem solving in a more general environment where Resolution is a special case.

16

The choice of A emerges from the Resolution model in a similar fashion. An n

is simply the expression which, when unified, proves a contradiction, or comes as

close as can be to doing so. That is, A is the set of expressions the Resolutionn

principle would choose to unify and solve the problem with.

The simulation of Resolution can be considered inefficient in the sense that it

provides no information toward avoiding blind alleys. The wp predicates yield some

information, but unless there is a means of evaluating where the weakest pre-

condition, wp(cR) is closer to the initial state than R itself, we will have no

way of knowing if w are headed in the correct direction. As a result, we will define

such a measure of "closeness to the goal" in the section on pseudometrics, which

will complete the problem solving system of this paper.

As described, this system contains no backtracking. The skeleton of a

backtracking system will be discussed, with the details left to the reader.

Suppose a level n is reached so that no program eliminates a literal from

. Then we should backtrack to level n-1 before C1 is applied andn n-l

use the next best program ' ' instead of and then continue with then-I n-I'

program synthesis. If at some point this precipitates backtracking to

level n-o, we can either choose a new difference statement A', or we can

00begin looking at pairs (then triples, etc) of programs cy;6 to negate A0.

By observation 8, such a method, as it would eventually check all conjunctions of

base programs, will be complete. This means if a program can be found to

satisfy the goal, it will be found. As we mentioned, if there is no solution

then this fact will often be undecidable.

It is probable that a combination of lemmasll and 12 would provide

the optimal search plan. The general difficulty in finding a 8 so that

A -# wp (8, R), coupled with the question of which route (11 or 12) to

take at any juncture prevents this from being developed here. It is a

good topic for future investigation in this area.

17

111. 3 Comparison to The Resolution Principle

The final observation of this section is that in afi ervronnt with

only the unification program, the system devolves to be a

modification of resolution. First note that in the absence of

other programs, we cannot change states. Therefore there are no

state dependent facts. In order to prove an assertion R,. the initial step

was to operate resolution and then exit with either a contradiction

and success, or a minimal assertion A and a set of state dependent facts.0

As noted, this set is empty, so we have only the assertion A0

Since there is only the unification program u, we set up a

new goal wp (cu R V 7A) s R V lA and attempt to prove that.

This is equivalent to choosing a conjunct of the set of theorems proved

by resolution and specifically trying to negate it, as opposed

to generally searching for a contradiction. If we fail to prove 7A
0

(and thus R) with resolution, we take a second difference AI and try to

prove R V A 0 V 7A This will continue until either we prove a contradiction

or we get a new conjunct A2. Because we will be taking progressively more

minimal statements Ai, we are imitating resolution, only with a focus.

We focus in on statements that seem the easiest to contradict, as opposed

to generally resolving all the theorems of resolution. With backtracking,

(the choosing of a different A) this method is approximately equivalent

to the Resolution Principle.

18

IV. .1 Comparison to STRIPS

The GC problem solver described shares many features with STRIPS. As

with the GC problem solver, STRIPS intially operates resolution to try to

prove its goal. If this fails, it chooses a theorem T resulting from

the resolution and tries to prove it. The theorem T corresponds to A A B1 . .B k

in our model. It is a result of the proof which, if made true, forces

the goal to be true. STRIPS then searches for a satisfactory operator, as

does the GC problem solver. Given this operator, it again tries to

prove the new goal. If this fails, it extracts the difference of the new

goal and the current state, and continues. This is precisely what the

GC problem solver does, albeit in a more formal manner. Consequently,

in a STRIPS problem environment, the GC solver simulates STRIPS.

However, there are several differences. The first major difference is

that the GC problem solver has the ability to use information about the

result of applying operators without actually applying them, in the form

of the weakest precondition. This allows it some vision as to what

branch is promising in the search tree, vision that is denied STRIPS.

STRIPS with MACROPS attempts to cope with this lack of vision by remembering

what was previously a successful path, however, there is no problem in

doing the similar thing with the GC planner and STRIPS still lacks any

vision concerning the application of concatenations of MACROPS. Thus, even in a

STRIPS environment, the GC solver can check whether wp(ce, R) is harder to satisfy

than R, and hence whether to apply c.

A second difference regards unification. It may be that we declare some

assignments of variables illegal and wish to prevent their occurance.

STRIPS places no restrictions on unification in its operation, while

such limitations are possible in DL. If we wish to rule out x-O in our

system, we may merely prevent any operator from ever assigning 0 to x.

19

This is one way in which GC has a wider scope than STRIPS.

Another important way is that in GC, we can call relevant data

(a data program is simply x - e, e being the data on variable x) with

a simple program. Moreover we have programs available which are much

more complicated than STRIPS operators.

Consequently, we see that the GC problem solver, while simulating

STRIPS within a STRIPS environment, can calculate the results

of its actions before it takes them, allowing it a modicum of "intuition"

about whichapproach to take. Moreover, it is at home in more complicated

environments where calculations and not Just theorem proving must be done.

Finally, by Lemma 2.12, we actually were able to prove that STRIPS did

what it claimed, that is, if it found its subgoal true, then the sequence

of operators did make the goal true.

IV 4.2 Pseudometrics

The search for an appropriate program to apply toward a goal may be

directed using the method of pseudometrics (4].

A pseudometric is a distance measure over a space . It is defined similarly

to the metric of real analysis.

Definition: A pseudometric on a set is a function p: X x X 4 R+

satisfying

i) p (x,x) - 0 for all xEX

ii) p(x,x') - p(x',x) 1 0 for all x, x' E X

iii) p(x, x') + p (x',x") z p(x,x") for all x, x', x" E

The difference between a metric and a pseudometric is that we may have

p(x,x') - 0 for x A x' if p is a pseudometric but not if p is a metric.

Because X will be a space of models in our application and we do not wish to

distinguish between every model with our measure, we will use pseudometrics.

20

We do not wish to distinguish between all models because often there will

be characteristics which are irrelevant. If we do wish to distinguish all

models, then metrics are relevant, and they are special cases of

pseudometrics.

We will characterize the space of models by the first order sentences

that are true in the model. Let SI,. ., Sn be a finite set of sentences,

and cl, . - ., c. be nonnegative real numbers called criticality values.

ci is interpreted to be the "weight" or importance of the ith sentence.

Let Mj, Mk be two models. A clash set rjk is defined by

Tjk = [i/Si is consistent with one of the models and not the otherl.

A pseudometric p is then defined by

P(Hj, N k) Z -

iErjk

j k
for any models M , M . To prove p is a pseudometric, we must establish that

the rules A ii and iii) hold.

i) if Mj = Mk, then S is either consistent with both or neither. Thereforei~oI
rjk 0 and p(Mi, Mk) i Y i = 0.

iEFjk iE0

- 4

21

ii) Observe that rjk rkj as the order of the models is irrelevant.

Therefore

pQJ,Mk) ci. ci. p Mk, Mj

iEPJk i

moreover, since c a 0, c 2 O.

0 2
iii) Finally given m° , M and M claim F 0 2 CFO0 U FI2

Proof of claim: Suppose iE .02 ' Si is either consistent with

M and not with M2 , or with M and not Mo. Suppose the former

holds. Si is either consistent with M
1 or not. If Si is consistent

i 2
with M I , we have that it is inconsistent with M and thus icF1 2. Otherwise

its inconsistent with M I and not with M° , and consequently iE F0 1. The

argument where S. is inconsistent with M and consistent with M 2 isI

symetric. Therefore iE F0 2 implies I F0 1 U F 12 , and

r02 c rOl U F1 2 , as desired.

Therefore p (M° , MI) + p (MI , M2) = c ci ci
iErOI iEr1 2 iEF 0 u12

" c + i C 2ci" PL(W M2), and

iEl'0 2 iE(r 1 U r 12)/r0 2 iET 0 2

consequently the triangle hnequality holds.

Thus we have shown that the construction of p satisfies the properties of

a pseudometric. Thus p is a distance measure over the space of models. The

distance of M° and M as measured by p represents the clash of those models with

respect to the sentences Sl,... Sn and the weights ci associated with them.

The optimal use of p requires the appropriate choice of Si and ci. We will dis-

cuss this in the next section.

IV. .3 Directing a problem solver

Suppose we have a goal model in mind M and a set of sentences S, . .S .
G n

which are the criteria by which we judge a model. Further suppose the weights

0 1
c ,..., cn are given. If M , M are two achievable models, and if

m ._ __ _.__._______.________ .d

22

a 1 1
p(M°,M) > p(M ,MG), then by the criteria of the pseudometric, M is closer to

MG than M40 is. This is the sense in which we mean a pseudometric can guide a

problem solver. STRIPS implicitly assumes a pseudometric where c = 1 for all

i : n. The sentences Si are the negations of the assertions in the goal model.

This is easily seen. When STRIPS checks if a model M is close to a goal

model MG , it checks whether the assertions of the goal model are proved in

M. This is equivalent to the negations of the assertions of the goal

model being inconsistent with M, since the negation of an

assertion of a goal model is inconsistent with the goal model. This is

equivalent to checking if I r, as i t r if Si is inconsistent with M (and Si is

inconsistent with MG, Si being the negation of an assertion of MG). Since

STRIPS does not differentiate the weight of the different sentences, we may

assume c, = 1. In passing, we note that ABSTRIPS [6] assigns different weights

to the sentences S. and gains some direction as a result r4l.

The notion of inconsistency applied is derived from standard proof

theory, using modus ponens and universal generalization. In particular, the

Resolution Principle would yield the same notion.

It is the choice of S. and c. that concerns us here. First we identify
1 1

the S Recall that we have a subgoal (goal) R which we would like to use

programs to make true in the initial state. That is, we would like R to be

true, or to find a program a so that wp (H, R) is true, in the goal model.

If the model M is a true representation of the state of the world, then we would

like p (wp(O,R), M) = 0 to mean wp (B,R) is true in the initial state M. Thus

we want no assertion of wp (,R) to be inconsistent with M. Consequently let

S,..., Sn be the assertions of M. Then p(wp(e,R),M) = 0 if and when

wp (&,R) is not inconsistent with M. Therefore, we wish to

let sit. .,Sn be the assertions of the initial state, the facts that are

known to be true.

The choice of c i's are a more difficult problem. However, there are some

heuristics to consider in their choice.

23

First, if there is a program B so that for almost any R, S. is consistent
• 1

with wp(o,0 R), then ci should be low. This is because we can apply B

with low expected complications so that S. becomes only a minor problem. On

the other side, if most of the programs B are such that S is inconsistent

with wp(B,R) for most R, then C should be large. This follows because C

is determined by what complications it presents in the truth of wp(e, R)

The best choice of the criticality values depends on the problem

environment. Obviously, the relative importance of aspects of a problem

is a subjective issue, and developing a more formal theory is a topic for

future research.

IV. .4 Application of a pseudometric

Once a pseudometric has been constructed, we may use it to direct the

choice of which program to apply next. In particular, we may define a greedy

strategy, one that chooses the maximum decrease in the pseudometric value

with each program application. If backtracking is available, this is perhaps

as good a method as any. To use the pseudometric to guide the program search,

we must use it as the criteria to judge which program to choose. This

requires evaluating the metric at each time a candidate program is proposed in

the manner described. Once such a metric is set up, it is a tremendous asset,

as it defines the notion of distance to a solution. It should be emphasized

that much more general pseudometrics may be instituted [see example in McAfee

& Whinston 1980] than the one described in this paper. However, a formal notion

of distance to a goal is a pseudometric, and if a machine is ever to act as if

it knew what 'close' means, it must have a measure of distance.

For computers to solve general problems, it is likely that they will have to

simulate human decision making. Despite vast computational power and extreme

speed per computation, computer solutions to general problems are still

unacceptably slow. It is thus of interest that the procedure described in

this paper is analogous to a human method of problem solution, at least in

the abstract. The procedures first checks if there is anything to be done, that

is, if the goal is true currently. Its next step is to consider the possible

24

alternatives. Analogous to a person, it checks if the alternative (program)

does something potentially useful, by means of its pseudometric intuition,

and whether the preconditions of the alternative are reasonable, using the

weakest preconditions of Dijkstra. Backtracking gives us the generality

of these methods, and the pseudometric gives us the means of telling a computer

what is reasonable and what is not. As a result, the methods of this paper

provide a new approach to automated problem solving.

V. Example

The example we provide is similar to that of artificial intelligence

literature. We have a robot in a 2 room suite. The robot's position

POSITION (x,y) is described by the variables (x,y). There is a window which

is open when V = I and shut if V - -1. The variable V is associated with

the predicate 'WINDC (V)." There is a door between the rooms, which can be

open A = 1 or shut A -1, and A is associated with the predicate OPEN.(0). There

are 3 operators given below.
4

Y I

2 -
I" ,2 -,

I I

1 2 3 4 5 6
x

61 OPENINDOW Precondition: POSITION (0,2)
Addition: WINDOW (1)
Deletion: WINDOW (-I)

B2: THRUDOOR Preconditions: OPEN (1) A POSITION (2,1)
Addition: POSITION (4,1)
Deletion: POSITION (2,1)

03: INROOMMOVETO Preconditions: POSITION (xlY)A[(x 1 3Ax 253)v(xl>3Ax2>3)]

(12' Y2) Addition: POSITION (x2,Y2)

Deletion POSITION (xI ,yl)

25

The corresponding GC programs are

B1 : (xO A y-2)?; V 4- 1 U 1I(x=O A y= 2)?; ABORT

B2 : (9-1 A x-2 A y=1)?; x +- 4; y 4- 1 U 1U(= 1 A x=2 A yl)?; ABORT

B: [(x53 A x !3) V (x>3 A x >3)1? x 4-xj y +- y 2 U1[(x!3 A x2!3) v (x>3 A X2 >3) ABORT
3 2 2 2'* 22

We denote the state changing parts of Oi by ;i' i.e.,

V 4- 1, B2 x 4- 4; y 4- , B3 x 4- w; y 0- z.

Our goal for this example is the following model R 0o

POSITION (6,0) A WINDOW (1)

or, in DL notation, x - 6, y = 0, V = 1.

Our initial state, MI, in this example is:

POSITION (0,4) A WINDOW (-1) A OPEN (1)

That is, x 0 0, y = 4, V = -1 and A = 1.

According to the method of this paper, to calculate the pseudometric we

take the sentences of the initial model, negate them to form the critical

sentences S,, . . ., S , and assign them criticality values c r . ., c . We shalln

do this with the sentences V = -1 and A = 1, however, we shall introduce an

interesting twist on the sentence x = 0 A y =4 . Essentially this will involve

using the broken euclidean distance metric as the measure of distance.

Let S1 be 1(V= -1) and S2 be 1(1 = 1). Let the criticality values associated with

S1 and S2 both be unity. In addition, define c3 (Xl, yIp x2V Y2)

y(x' - x2
)2 + (Yl y2

) 2 If (x1<3 A X 2<3) V (x>3 A x 2>3)

c3 (x1 ' yI, x2' Y2) S (X1 - 4)2 + (y - 1)2 If (Xl>3 A x 2 '3)

F-)2
2+2 + 2- 2 + - 1)2

It is readily verifies thec 3 gives the broken Euclidean distance metric for

the distance between (x1 , yl) and (x2, y2). (see diagrau 2)

Now we define, for two models M1 and M2

p(M1 , M2) Ici 4 c 3 (x1 ,y 1 , x2 , Y 2)

ierT12

),N-T;

26

where POSITION (xl, yl) is true in M and POSITION (x2, y2) is true in M
2.

e3 measures the distance, which is a metric and hence a pseudometric, to one

position from another.

I , /

I 4 ,)' I

_ I-

,I ,- - - - - - - - -/ - ;

S__ . .. ' I- ---

,2,) ' ,11

I I , /I

I I

Diagram ..2 Distance through the door.

distance from (1,3) to (5,4) is the distance from (1,3) to (2,1)

d,(1,_)' + 3_.l) .V- plus the distance from (4,1) to (5,4) (V4-5) 2 + (1-4)7=

V10) plus the distance from (2,1) to (4,1), or 2.

In this example, the candidate programs are chosen fortuitously. The actual

execution would require several backtrackings. The point of this example

is to illustrate the use of weakest preconditions and pseudometrics.

........

27

Observe, as V is disagreed on

p(M I R0) nZ c~ 3 = 1 +3 (0, 4, 6, 0)

= 1 +(6-4) + (0_1)2 + 2 + (0-2) + (4- 1)2

a 3+ \ F+ V13.

Any STRIPS type program 0 has a special form, which is given by P?;0 U 7P?;ABORT.

For any sentence S, wp(O,S) also has a special equivalent form, as we now show.

wp(B,S) a wp(P?;; U 1P?ABORT, S)F

-0 wPj, S)) A Ci wp(ABORT, S))

(?P V WP(B,S)) A (P V false) (iP V wp(B,S)) A P

P A wp(B,'S).

We shall use this simple reduction throughout the example.

Let 0 be our first candidate program. It is a natural choice as the preconditions

of 01and 0 2 are not satisfied. The algorithm yields:

r - R 3 A 2 - 3 (x > x3A 2 3)3 wp(03, R 0
1 0 A- 5P0 V x3A2

£(6 s 3 A 3) v (6 > 3 A x2 > 3)] A wp(x #- x; y R-y, %

Ex 2 > 3) A POSITION (x2 , Y2) A WIN'DOWA (1), as 6 3.

p(M1, R 1) =i ,i ,V(-2, + (4-1)2 2 + "4 2; (l-Y2

minimizing p(M., R) with respect to x 2, y2 yields x2 = 4 and y2 I

and R, = Position (4, 1) A WINDOW.' (1)

and hence p(M1, R 1 3 +V13, a distinct gain.

The preconditions of 1 are not satisfied, and the use of $3will not provide

any reduction of p, so we let 6 be our next candidate program. Then we have:

R 2-Mwp 0 2 R1) Q(-=1A x-4 Ayl-)A wP(B2 R)1

(x - 2 A Y - 1) A WP (x #- 4; y #.- 1, POSITION (4, 1) A WINDOW4 (1))

SPOSITION (2, 1) A WINDOW (1). We have

p(M 1 , R 2) - C + c3 l+ V(O-2) (4-l)2 1 +V13, .

again an improvement.

28

The next program we check is 3"

R3 - wp (B3 ,R2) x - x2 A y y 2 A x < 3 A V - 1

p(R 3 , M\) 1 +V(O-x 2)2 + (4-y 2) 2 1 +(4 2

we could minimize this, but it would not deal with opening the

window. Consequently the machine would make an error here (going to

(0,4)). At this point p -1 and the machine would attempt to open the

window by applying the operator 51" This reveals the position problem as

we see

R wp(51 ,R3) (x - 0 A y = 2) A wp(8 1 ,R3)

- x = 0 A y = 2) A (x - x 2 A y = y2) A V = -i

- x = 0 A y =2 A V - -i Thugsthe wp's direct x2 0 A Y2 2

p(R 4 , MI) - - 0) 2 + (2 -) 2 = 2, an improvement.

Finally, we operate p3 once more

R - (3 R 4 =" x = x3 A y = Y3 A wp(3 , R)

x A y =Y3 A x =0 A Y =2 A x < 3] A (V= -1)

x x 3 A y = y3 A x < 3 A V = -1
Minimizing p(R5, M) =V0-x3)2 + (- y3

subject to x3 ! 3

yields x3 = O,y 3 = 4 and p(R5, M) = 0.

p(R5, M) 0 means the problem is solved by the program sequence

(3;81; B3; 82; 83).

There are two significant characteristics displayed by this example.

First, the notion of a pseudometric admits such measures as Euclidean dis-

tance. One is not restricted to such pseulometrics as discussed in

section 4, and we may use ordinary measures to measure the difference of

models.

Perhaps more important, the pseudometric may be used to guide

OWN""

29

the choice of operators where an operator is a schema. In both the first

and third application of 3 we used minimization of the pseudometric

as the choice function for the values (xityi), the point from which we

were moving. As we saw in the second application of 8 this is not an

ideal guide (because it tells the machine to make easy gains) but it is a

guide to the choice of values for a schema. Used in conjunction with the

preconditions of the next program, it becomes a very useful guide.

Backtracking is employed to handle cases where it fails to guide impeccably.

One final point, some pseudometrics arise naturally on a space of

models. In our example, the distance measurec 3 is an appropriate

measure due to considerations resulting from Euclidean space, and the

existance of a barrier. Others, such as the measure of the value of a

window discrepancy, are arbitrary. Their value may rest on the judgement

of the individuals who initially describe the program.

In this example we chose the programs so that they worked. However,

if we are faced with a problem not contrived as an example, we could

use the pseudometric as a guide to problem solution. If the other

programs were tried and then checked via the pseudometric for

improvement, we would find that generally the best program would also

minimize the pseudometric. This occurs because the pseudometric values

were improvements and the best program generally results in improvement.

VI. Conclusion and research topics

In this paper, several extensions of problem solvers are examined.

Specifically, we looked at problem solving in a larger language than

first order calculus, one that incorporates the programs which form the

nucleus of problem solving systems. Next, a method of enbedding a portion

of this language in the first order calculus was examined. We proposed a problem

solving system that extends STRIPS and the Resolution Principle. We then formalized

the notion of distance in models and showed how this may be used to direct the search of

* .30

the machine for a solution.

Perhaps the most important research topic is the inclusion of program

union and iteration in the program synthesis algorithm. These are

important methods of combining programs, and present some complications

in their inclusion. Lemma 2.11 shows how union may be profitably included.

However, the correct use of this Lemma is difficult to incorporate into the

algorithm. Iteration presents a tricker problem, as the weakest pre-

condition is an infinite disjunction. Some promising research

suggests that iterations could be called for when induction is called

for. However, the problem of when to use it still remains.

With regard to pseudometrics, an important line of inquiry is the

optimal utilization of the measure and minimizing the cost of evaluation

of the pseudometric. Moreover the choice of the criticality values still

remains open. Effective use of pseudometrics, and indeed, efficient

decision procedures, requires additional research on this topic.

'1
4

7 %NM

31

[I] Dijkstra, Edsger W. "Guarded Commands, Nondeterminacy and Formal
Derivation of Programs, "Conuunications of the ACM, Vol. 18
No. 8, (1975) pp. 453-457.

[2] Fikes, Richard E. and Nils J. Nilsson. "STRIPS: A New Approach to
the Application of Theorem Proving to Problem Solving," Artificial
Intelligence 2, 1971 pp. 189-208.

(3) Harel, D., First-Order Dynamic Logic, Lecture Notes in Computer
Science, Vol. 68, Springer-Verlag, 1979.

(4] McAfee, R.P. and A.B. Whinston. "A Formal Model of Problem Solving,"
Journal of Policy Analysis and Information Sciences, forthcoming
April 1980, Vol. 4, No. 2

[51 Robinson, J.A. "A Machine Oriented Logic based on the Resolution
Principle," Journal of the ACM, Vol. 12, No. 1 (1965) pp. 23-41.

(6) Sacerdoti, E.D. "Planning in a Hierarchy of Abstraction Spaces,"
Artificial Intelligence 5, 1974 pp. 115-135.

t .

-..- i

